人工智能是否有自己的思想?这样的人工智能是否存在伦理问题?
·“对我来说广义上的人工智能不是一项技术,而是一种思维方式和解决问题的方式,就像一个新的工程领域一样。有趣的是,这是第一个不只关于世间万物——原子、分子、电子和混凝土碎片的工程领域,它还包括人类的决定,人类的欲望、愿望和偏好。所以这是一个令人兴奋的新工程领域,但也是一个非常复杂的大领域。”
“我们即将见证一个新的工程学科的出现,这个学科基于智能科学、统计学和经济学原理,但其目标是基于数据建设新型世界。这一学科基于全球网络和数据流,为商业、医疗、交通和娱乐产业提供强大支持。这将是第一个围绕人类偏好、价值观和决策的工程领域。”11月6日,美国科学家迈克尔·I·乔丹(Michael I. Jordan)在首届世界顶尖科学家协会奖(WLA Prize)颁奖现场演讲,“同早期工程领域一样,机器学习和人工智能领域必须通过国际合作,才能走向繁荣并实现愿景。”
首届世界顶尖科学家协会奖得主、美国计算机科学与统计学家迈克尔·乔丹(Michael I. Jordan)。
今天,人们谈论人工智能时主要指其技术基础——机器学习,而谈到机器学习,乔丹是绕不开的宗师级人物。过去十年,机器学习在诸多领域的应用得到爆炸式发展,如自动驾驶汽车、X光片分析、蛋白质折叠预测等,都离不开基于他的研究所塑造的理论框架。
今年9月29日,乔丹获颁首届世界顶尖科学家协会奖“智能科学或数学奖”,以表彰他“对机器学习的理论基础及其应用作出了根本性贡献”。 当乔丹接到2006年诺贝尔化学奖得主、世界顶尖科学家协会主席罗杰·科恩伯格(Roger Kornberg)的通知电话时,他正在和学生一起做研究项目。“我现在不能和你聊天,因为我正在和学生们一起工作,这对我来说很重要。”第一通电话结束后,科恩伯格还没有告知乔丹获奖消息的机会。
对于获奖的意义,乔丹说,所有人都认为奖金的意义在于它能让你做什么,但对他来说,获奖主要能帮助他与别人进行新的互动。
乔丹对自己的认知是一个“解决真实世界中存在的问题的人”,他喜欢不同领域之间的联系,喜欢“统计和经济、文化和历史等之间的桥梁”。他的学术经历也证明了多学科交叉融合对机器学习的重要性。
在接受澎湃科技(www.thepaper.cn)的采访时,乔丹强调了数据的重要性。“数据让我们能够做出转变。现在我们有了新兴的个性化医疗。如何实现个性化医疗?这意味着你有很多关于每个人的数据。就像天文学,你现在有很多关于宇宙每个区域的数据,你可以分别研究它们。”他说,而随着时间的推移,他意识到需要一种经济学视角。
多学科交叉经历
求学初期,乔丹在完成路易斯安那州立大学心理学学士学位后,决定努力成为一名数学心理学家,并开始在亚利桑那州立大学攻读数学和统计学硕士学位。然而,他很快意识到不想只是为了分析数据而学习统计学,还想为了建立新模型并探索统计推断与人类思维的关系。
硕士毕业,乔丹与加州大学圣地亚哥分校的教师会面后发现了认知科学的新兴领域,“我有一种‘啊哈’的体验。在那个时代,这是一个新领域,它实际上是关于将数学和科学应用于人类思考方式的问题,这启发了我。”
此后不久,乔丹师从美国国家科学院院士、心理学和认知科学教授David E.Rumelhart,攻读认知科学博士学位。在博士阶段,乔丹对控制理论很感兴趣,“因为我试图了解人类如何做出动作,如何学习移动以操纵世界上的物体。”控制理论基于构建被控制的动态系统的模型,使用乔丹已经熟悉的统计建模思想。“在我转向运动控制以外的其他主题很久之后,这种统计数据和优化的结合继续成为我工作的特点。”他说。
在乔丹的博士生涯即将结束时,他开始觉得有必要回到推理和决策方面更广泛的问题上,并感觉到他的统计和控制理论观点需要通过计算机科学提供的算法来增强。因此,在1985年完成认知科学博士学位后,乔丹前往马萨诸塞大学担任人工智能领域的博士后研究员。
博士后的研究工作结束后,乔丹在麻省理工学院工作了十年,从助理教授晋升到脑与认知科学系的终身职位。1998年,他加入加州大学伯克利分校任教,担任电子工程与计算机系和统计学系教授、实时智能决策计算平台实验室(RISELab)共同主任、统计人工智能实验室(SAIL)主任、统计系系主任。
目前,乔丹已当选为美国国家科学院院士、美国国家工程院院士和美国艺术与科学院院士。
顶尖科学家协会“智能科学或数学奖”的意义
乔丹认为,研究者们需要考虑自己终生追求的事业,但也需要明白:你不可能只做一件事情。“在我的生涯中,至少花费了30%的时间学习新事物,它们可能在未来与我有关。我看过很多视频,甚至读过一些有趣的本科生水平的书籍。”今年66岁的乔丹,还保持着睡前阅读其他学科专著的习惯,近几年的重点是经济学专著。
回顾乔丹的职业生涯,他的突出贡献在于成功连接了计算机科学和统计学这两个学科,包括统计推理和学习的变分方法、基于图模型和贝叶斯非参数化的推理方法,以及统计风险和计算复杂性之间的权衡特征。乔丹也涉猎优化和机器学习的交叉领域,因开发了基于梯度的优化和抽样的连续时间模型,以及用于优化的分布式系统上的工作而闻名。
除此之外,乔丹还构建了机器学习和控制理论间的关联研究,为强化学习理论、基于学习的模型预测控制和人类运动控制的最优化原理做出了贡献。同时,乔丹率先将微观经济概念与机器学习相结合,开发了激励学习者分享数据的学习方法,并展示了如何将契约理论用于统计推理,为基于学习的匹配市场研究做出卓越贡献。他同时致力于推动机器学习在单分子成像、蛋白质建模、基因重组建模和自然语言处理等高影响力领域的应用。
对于世界顶尖科学家协会设立“智能科学或数学奖”,乔丹表示,计算机科学的历史还没超过100年,但现在已经产生了巨大影响。“我们仍然没有很好地了解,这个影响的未来会是怎样、计算机到底能做什么、我们真正想让它们做什么,像这样给计算机学科设立一个奖项,可以就计算机科学是什么进行更好的对话,认识到它是一种强大的力量,认识到它与化学或物理学一样重要。”
以下为澎湃科技与乔丹的对话。
澎湃科技:目前在从事什么研究?
乔丹:目前,我正致力于从微观经济学中获取一些概念,比如匹配市场、契约理论或拍卖,并从受过统计培训和计算机科学训练的人的角度来看待它们。
匹配市场是经济学中非常重要的一部分。例如,如何将实习生与医院匹配?如何将大学申请者与大学进行匹配?如何为需要肾脏的人配对?这些事情在人类生活中无时无刻不在发生。
也比如在现实生活中,如果我第一次来上海想找一家非常好的餐厅,但我不想去百度看所有的广告,我希望市场对我有所了解,如我喜欢什么样的食物,我愿意付什么样的价格等,然后它帮助我找到匹配的特定餐厅。我喜欢思考这种现代市场,之前从来没有过这样的市场,但我们现在看到这样的市场开始出现。
澎湃科技:你的研究方向包括在稀缺资源的条件下如何做出决定、将错误率维持在低水平的条件下做出高质量的决定。这些研究对人类决策有哪些帮助?
乔丹:稀缺是一个经济学词汇,意味着没有足够的资源供每个人使用,所以你必须权衡利弊。想象一下,如果一个应用程序向你推荐了最快的机场路线,但上海所有人都使用这个应用程序,那么所有人的路线都不再是去机场最快的路线,而是去机场最慢的路线,因为应用程序造成了拥堵。每个单独的决定看起来都很好,但集体的决定却很糟糕。所以这里的稀缺性问题是路上没有足够的容量供每个人使用。
现在如果必须让这个系统找出怎么走,那么就要思考谁想去哪里,是否赶时间,或者是否愿意走得慢一点以便让其他人走得快一些等。这就又开始让人感觉像是一个有数据、原则和价值观的市场。这就是我正在做的事情,某种有着在线数据支撑的匹配市场。
声明:本站所有文章资源内容,如无特殊说明或标注,均为采集网络资源。如若本站内容侵犯了原著者的合法权益,可联系本站删除。